Biomaterials, Biodegradables and Biomimetics Research Group

Papers in Scientific Journals

3D protein-based bilayer artificial skin for guided scarless healing of full-thickness burn wounds in vivo

Abstract

Severe burn injuries can lead to delays in healing and devastating scar formation. Attempts have been made to develop a suitable skin substitute for the scarless healing of such skin wounds. Currently, there is no effective strategy for completely scarless healing after the thermal injuries. In our recent work, we fabricated and evaluated a 3D protein-based artificial skin made from decellularized human amniotic membrane (AM) and electrospun nanofibrous silk fibroin (ESF) in vitro. We also characterized both biophysical and cell culture investigation to establish in vitro performance of the developed bilayer scaffolds. In this report, we evaluate the appropriate utility of this fabricated bilayered artificial skin in vivo with particular emphasis on healing and scar formation due to the biochemical and biomechanical complexity of the skin. For this work, AM and AM/ESF membranes alone or seeded with adipose-tissue-derived mesenchymal stem cells (AT-MSCs) are implanted on full-thickness burn wounds in mice. The healing efficacy and scar formation are evaluated at 7, 14, and 28 days post-implantation in vivo. Our data reveal that ESF accelerates the wound-healing process through the early recruitment of inflammatory cells such as macrophages into the defective site as well as the up-regulation of angiogenic factors from the AT-MSCs and the facilitation of the remodeling phase. In vivo application of the prepared AM/ESF membrane seeded with the AT-MSCs reduces significantly the post-burn scars. The in vivo data suggest that the potential applications of the AM/ESF bilayered artificial skin may be considered a clinical translational product with stem cells to guide the scarless healing of severe burn injuries.

Journal
Biomacromolecules
Volume
19
Issue
7
Pagination
2409-2422
Publisher
ACS
ISSN
1525-7797
URL
https://pubs.acs.org/doi/10.1021/acs.biomac.7b01807
Keywords
amniotic membrane, silk nanofibers, skin, wounds
Rights
Restricted Access
Peer Reviewed
Yes
Status
published
Project
FoReCaST
Year of Publication
2018
DOI
10.1021/acs.biomac.7b01807
Date Published
2018-07-09
Search Google ScholarGenerate BibTexDownload RTF
This website uses cookies. By using this website you consent to our use of these cookies. For more information visit our Policy Page.