Biomaterials, Biodegradables and Biomimetics Research Group

Papers in Scientific Journals

Structural, UV-VIS-NIR luminescence and decay associated spectral profiles of Sm 3 doped calcium phosphate glass

Abstract

Rare-Earths or Lanthanide ions (Ln3+) are a group of elements from lanthanum to lutetium (Z=57 to 71), plus scandium (Z=21) and Yttrium (Z=39). Ln3+ doped glasses have been included within the Hydroxyapatite (HA) matrix, inducing promising changes in their physicochemical and biological properties. Because of the lanthanides' ability to modulate bone metabolism, inclusion of Ln3+ in the composition of calcium phosphate biomaterials for bone tissue regeneration has been considered. Earlier, the authors studied Samarium (Sm3+) doped glass-reinforced hydroxyapatite with enhanced osteoblastic performance and antibacterial properties for bone tissue regeneration. Moreover, Sm3+ substituted calcium phosphate is a non-hazardous material that luminesces under UV-visible light. In this work, we study a calcium phosphate host glass doped with samarium oxide, which has been prepared and characterized by FTIR, SEM, EDS analysis, and X-ray mapping. Pumping with two visible excitation sources at 405nm and 423nm, we observed intense, sharp Green, yellow, orange emission peaks (4G5/2→6H5/2,7/2, 9/2) at 560nm, 596nm and 643nm respectively. A weak red emission was also observed at 704nm. Two NIR peaks at 1134nm (4G5/2→6F11/2) and 1310 nm (4G5/2→6F9/2) are monitored by using an excitation at 1060nm. Furthermore, by making use of time-resolved emission spectroscopy (TRES) measurements, the decay associated spectra were obtained allowing the kinetic parameters for the different emission bands to be elucidated and compared with steady state emission spectra.

Journal
Advanced Materials Letters
Volume
7
Issue
9
Pagination
702-707
Publisher
VBRI Press
ISSN
0976-3961
Keywords
glasses, luminescence
Rights
Open Access
Peer Reviewed
Yes
Status
published
This website uses cookies. By using this website you consent to our use of these cookies. For more information visit our Policy Page.